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Abstract-The problem of the simple smooth curvilinear crack in an infinite anisotropic elastic medium under
conditions of generalized plane stress or plane strain and under the supposition that the plane of the problem
is a plane of elastic symmetry of the anisotropic medium is reduced to a complex Cauchy-type singular
integral equation along the crack together with a condition of single-valuedness of displacements around the
crack by using the complex potentials technique. Application to the case of a straight crack is also given,

I. INTRODUCTION
The problem of the simple smooth crack in an infinite anisotropic elastic medium under
conditions of generalized plane stress or plane strain and under the normally made supposition
that the plane of the problem is a plane of elastic symmetry of the anisotropic medium seems not
to have been solved in its general form although the corresponding problem for an isotropic
medium has been completely solved [1-4]. Only the case of a straight crack in an infinite
anisotropic elastic medium has been studied, due to its simplicity.

Thus, Savin[5], Milne-Thomson[6] and Galidakis[7] have considered special cases of the first
fundamental problem for a simple straight crack in an infinite anisotropic medium by using the
method of conformal mapping of the crack on the unit circle or, in another way, by considering
the crack as an extreme case of an ellipse in an infinite anisotropic medium. Particularly, the
stress field near the crack tip has been studied by Sih, Paris and Irwin[8].

One easier way of treating the problem of a straight crack in an infinite anisotropic medium is
by reducing it to a Riemann-Hilbert problem along the crack through the use of the method of
complex potentials in a way analogous to that used by Muskhelishvili[9] for the case of an
isotropic medium. This method has the advantages over the above-mentioned method of
conformal mapping that it is relatively simpler and can be applied to the case of multiple collinear
cracks. By this approach, the first fundamental problem for collinear cracks in an infinite
anisotropic medium was treated by Green and Zerna[lO] in one special case. More general cases
of the same problem have been considered by Sih and Liebowitz[ll] and Ioakimidis[12], while
the most general case has been recently studied by Krenk[13].

A third way of studying the problem of a simple straight crack in an infinite anistoropic
medium is by considering the crack as composed of a series of elementary and infinitely close to
each other dislocations. This approach was used by Barnett and Asaro[l4] and Tupholme[15],
while Stroh[l6] has found the stress fields caused by dislocations and cracks in plane anisotropic
media. The main advantage of this method consists in the fact that it is applicable not only to the
case when the plane of the problem is a plane of elastic symmetry, but also to the case when this
plane has an arbitrary orientation, when the method of complex potentials does not work.

For the solution of the first fundamental problem of a simple smooth curvilinear crack in an
infinite anisotropic elastic medium, both the method of conformal mapping and the method of
reducing this problem to a Riemann-Hilbert boundary value problem cannot be easily used. Only
the method of dislocations may be used in the case when the applied external stresses on the two
edges of the crack have the same distribution. In the opposite case, this method should be
complemented by considering not only dislocations but also concentrated forces along the crack.
This method will not be used here, but it is easy to prove that it is equivalent to the method used
here.

In this paper, the method of complex potentials for the anisotropic plane elasticity, developed
by Lekhnitskii[17] and others, will be used, together with the Plemelj formulae, for the reduction
of the problem under consideration to a complex Cauchy-type singular integral equation along
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the crack in conjuction with the condition of single-valuedness of displacements. This integral
equation can be easily reduced to a pair of Cauchy-type real singular integral equations, which
can be further solved by conversion to a system of linear equations and application of either the
Gauss-Chebyshev method, developed by Erdogan and Gupta[18], or the Lobatto-Chebyshev
method, developed by Theocaris and Ioakimidis[19].

2. GENERAL FORMULAE

Consider a simple smooth crack L in an infinite anisotropic medium. The crack is loaded on
both its edges (+) and (-) by normal and shear loading, CT,,±(t) and CT,±(t) respectively. Also the
stresses at infinity CTxx =, CTyy =and Txy =are considered to be known. We will try to find the complex
potentials <l>o(ZI) and '1'0(Z2) of the theory of plane elasticity for anisotropic media[l?], where
variables ZI and Z2 are related to the Cartesian coordinates x and y through relations

(1)

where ILl and IL2 are complex constants characterizing the material of the anisotropic medium
under consideration.

The stress components CTxx , CTyy and Txy may be found at any point of the anisotropic plane
through the complex potentials <l>O(ZI) and '1'0(Z2) by using the following formulae[5]

CTxx = 2Re {IL/<I>o(Z,) + IL22'1'o(Z2)},

CTyy = 2Re {<I>O(ZI) + '1'0(Z2)},

Txy = -2Re {IL,<I>o(ZI) + IL2'1'o(Z2)}'

(2)

As regards the normal and shear components of stresses, CT" and CT, respectively, on the two
edges of the crack, they can be determined by using the following relation[9]

. 1 e-2i
" •

CT" + /CT, = 2(CTxx + CTyy ) - -2- (CTxx - CTyy + 2/Txy ), (3)

where iJ is the angle subtended by the tangent of the crack at a point t of the crack and the Ox
axis. This relation is valid for both isotropic and anisotropic media, while relations (2) are valid
only for anisotropic media.

Introducing expressions (2) of stress components CTxx, CTyy and Txy in relatio~s(3), we obtain

CT" + JCT, = Re {(l + IL /)<I>o(t I) + (1 + IL /)'1'o(t2)}

dt
+ dt {Re {(1- IL/)<I>o(t,) +(1- IL22)'1'0(t2)}

+2iRe {IL,<I>o(t,)+ IL2'1'0(t2)}},

after taking into account that

dt 21"==e ,
dt

(4)

(5)

where t are the points of the crack L of Fig. 1, while t I and tz are the points resulting from points
t according to relations (1).

If the point t moves along the crack L, the points t, and t2move on two representations L ,
and L 2 of this crack determined by relations (1) (Fig. 1). If a and {3 are the tips of the crack L,
then a" {31 and a2, (32 are the tips of the arcs L , and L 2 respectively.

One can note that eqn (4) can result in another way as follows: We take into account that the
components X" and Y" of the loading of the crack along the axes Ox and Oy respectively are
related to the complex potentials (,Oo(z,) and I/IO(Z2) along the arcs L, and L 2 respectively through
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relations

cPo(z.) + cPo(z.) + l/Io(Z2) + l/IO(Z2) = - LYn ds + Cl,

/-LICPO(ZI) + {iICPo(zl) + /-L2l/10(Z2) + {i2l/10(Z2) = LXn ds + C2, (6)

where s is the crack length along the crack L and the complex potentials CPO(ZI) and l/IO(Z2) are
related to the above-mentioned complex potentials <l>o(zI) and 'I'O(Z2) by

(7)

From eqns (6) it can be further deduced that

f (Un +iUt) dT =if (Xn + iYn ) ds = (1 + i/-L.)CPo(t,)

+(1 + i{i,)CPo(t,) +(1 + i/-L2)l/IO(t2) +(1 + i{i2)l/IO(t2) +CI+ iC2. (8)

Because of relations (1), we can find that the points t l and t2 of curves L. and L 2 are related to
the corresponding points t of crack L by

(9)

Equation (9) differentiated with respect to t yields

~~I =~ {(1- i/-L,) +(1 + i/-LI) ::J, ~tt =~ {(1- i/-L2) +(1 + i/-L2) ::},

dt
, =! {(1- i/-LI) dt+(1 + i/-LI)}, dt2=! {(1- i/-L2) dt +(1 + i/-L2)}' (10)

dt 2 dt dt 2 dt

Now, eqn (8) differentiated with respect to t and because of relations (10) yields relation (4).
As regards the loading at infinity, which is asumed to be constant, we consider that functions

<l>o(z.) and 'l'o(Z2) tend to definite values rand f' for IZ •.21~00, having thus the forms

<l>o(Z.) = r +<I>(ZI),

'I'o(Z2) = r' + 'I'(Z2),

where the functions <I>(z I) and 'I'(Z2) tend to zero for z .,2~ 00, that is

(11)

(12)
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The constants f and f' can be easily determined from values U xx =, Uvy= and Txy= of the stresses at
infinity through the system of linear equations

f- f= 0,

~ /f + jL /f +~/f' + jL/f' = Uxx =,

f +f +f' +f' = U yy=,

~Jf + jLl + ~2f' + jL2f' = -Txy =,

(13)

the first of which is arbitrary and was used instead of the condition of rotation at infinity [5], while
the next three equations result from eqns (2) together with expressions (11) of complex potentials
<Ilo(z1) and 'I'O(Z2).

By considering now the constants f and f' as known, we have to determine the complex
functions <Il(z1) and 'I'(Z2), instead of <Ilo(z J) and 'I'O(Z2) respectively.

3. REDUCTION OF THE PROBLEM TO A
SINGULAR INTEGRAL EQUATION

For the reduction of the problem under consideration to a complex Cauchy-type singular
integral equation, we must use the boundary condition (4), which must be fulfilled on both edges
of the crack L. By inserting into this condition expressions (II) for the complex potentials <Il0(ZI)
and 'I'O(Z2) we obtain

(14)

where the function f(t) is defined as

1 - -
f(t) = un(t) + iu,(t) -2" {(I +~/)f +(I +jL/)f +(I +jL/)f' +(I + jL/)f'}

Equation (14) can be easily written under the form

(1 - i~ 1) {(I - i~ 1) +~: (I + i~d} <Il(t I) + (1 - ijL J)

{ dt }- { dt }x (I - ijL I) +dt (I + ijL 1) <fl(t I) +(1 - ijL2) (I - ijL2) +dt (I + i~2)

- -

{
dt }_ dt-

x 'I'(t2) +(1- ijL2) (1- ijL2) +dt (I + ijL2) 'I'(t2) = 2 dt f(t).

(15)

(16)

Equations (14) and (16) have the disadvantage that four unknown complex functions, <fl(ZI),
<Il(z,), 'I'(Z2) and 'It(Z2), appear in them. But, as it will be shown in the sequel, it would be
advantageous if one of these functions could be deleted. To achieve this deletion, we take into
account that the above functions are complex conjugate by pairs, when from eqn (16) as well as
its complex conjugate we find that

(17)
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with the function qT(Z2) deleted and the function g(t) defined as
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(18)

In another way, we can use relation (8) and its complex conjugate and delete the complex
potential '-;;o(z) when we have

(p.,. - iL2)~0(t I) +(iLl - iL2)~O(t I) + (p.,2 - iL2)!/JO(t2)

= ;i {(1- iiL2) f (CTn + iCT,) dr - (1 + iiL2) f (CTn - iCT,) dr}. (19)

Differentiating eqn (19) with respect to t and because of relations (7), (11) and (15), eqn (17) is
obtained. This equation must be valid on both edges of the crack L, denoted by the symbols (+)
and (-).

Since functions <I>(ZI) and 'l'(Z2) are sectionally holomorphic functions in the whole plane
except the arcs L 1 and L 2 respectively, without poles either in the finite part of the complex plane
or at infinity, they can be expressed, because of relations (12), through Cauchy-type integrals with
densities ~ (t I) and y(t2) as follows

(20)

It must be noted that subscripts (I) and (2) below the complex variables rand z have no real
meaning and could be omitted, but they are used to remind us that functions <I>(z) and 'l'(z)
appear in the problem under consideration with the variable z replaced by variables Zl and Z2
respectively. In this way, no confusion may arise.

Further, because of Plemelj's formulae, we obtain for the boundary values of the function
<I>(z) on the arc L I

(21)

and in a similar way for the boundary values of the function 'l'(z) on the arc L 2

Now, relation (17), written for both edges of the crack L, takes the form

{
dt }-x (1 - ill I) +dt (1 + iiL I) <I>±(t.) + (p.,2 - 1l2)

x {(1- ip.,2) +1: (1 + ip.,2)} 'l'±(t2) = g±(t).

By addition and subtraction of eqns (23), we obtain

(22)

(23)
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{
. dt .} 1 f cP (7'1)

(""'I-!iZ) (1-I""'.)+dt(1+I""'t) -'"7 --t dT.'lT1 L, 1', - ,

dt 1-----
-(!iI-iiz){O-i!iI)+dt O + i!iI)}-'"7 ( ~(Tt2 dTI

'lTllLI Tl-t l

+ (,.,.,z- !iz){(1- i"",z)+ddtt (1 + i,.,.,z)}~ ( y(Tz) dTz = g+(t) + g-(t), (24)
'lT1 1L2 Tz - tz

(""'1 - !iz) {(1 i,.,.,.) +:: (1+ i""'I)} <p(t l)+ (!il - !iz) {(1- i!il) +:: (l + i!il)} <p(t l ) + (,.,.,z - !iz)

X {(1- i,.,.,z) +:: (l + i,.,.,z)} y(h) = g+(t) - g-(t),

where relations (21) and (22) were also taken into account. Equations (24) can be written in a
simpler way, because of eqns (10), as follows

where the functions p(t) and q(t) are defined on the crack L as

(26)

(27)

In eqns (25), functions <p(t l ) and y(tz), which are representing the densities of Cauchy
integrals (20), are unknown and must be determined, in order that the functions ¢I(ZI) and 'I'(zz)

be determined too. For the solution of the system of eqns (25), we can express the unknown
function y(h) through the unknown function <p(t l ) as

1 dt 11-1-!izdt l !il-!izdtl--
y(tz)=--_ -dt q(t)---- -dt <p(t.)---- -dt CP(tI),

I1-z - I1-z z ""'z - ""'z z ""'z - ""'z z

because of the second of eqns (25). Introducing now the function y(tz). given by the expression
(27), in the first of eqns (25), we obtain a Cauchy-type singular integral equation for the
determination of the function <p(t l), which is expressed as

(28)

(29)

After the determination of the function <p(t.), the complex function ¢I(ZI) will be determined
from the first of eqns (20), while the complex function 'I'(zz) will be determined from the
following equation

,1,()_ 1 f q(T) d - ""'1-!iZ 1 <p(TI) d
T Zz - . l' • _ 7"1

27T1(,.,.,z -l1-z) L 7"z - Zz 2'IT1(""'z - ,.,.,z) L, 7z Zz

!il -!iz f <P(71)-d
- -- 7'1

2'ITi(,.,.,z - !iz) L, 1'2 - Zz

resulting from the second of eqns (20) if eqn (27) is also taken into account.
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4. THE CONDITION OF SINGLE-VALUEDNESS OF DISPLACEMENTS
The unknown function cp(tt) in the singular integral eqn (28) must also satisfy the condition of

single-valuedness of displacements u(z) and v(z) around crack L. We can obtain this condition
by taking into consideration the following formulae [5]

u(z) = 2Re {PICPO(Zt) + P2!/JO(Z2)},

v(z) = 2Re {qtlpo(Zt) + q2!/JO(Z2)}, (30)

where the constants Ph P2, ql and q2 are characteristic quantities of the material of the
anisotropic medium.

The condition of single-valuedness of displacements around the crack L may be written as

(31)

where the symbols u±(t) and v±(t) denote the values of displacements on the two edges of the
crack. This condition can be also written under the form

(PI + iql) ( [<I>+(TI)-<I>-(Tt)] dTt +(Pt + iqt) ( [<I>+(Tt)-<I>-(Tt)] dTt +(P2+ iq2)JLl JLt

x ( ['1'+(T2) - '1'-(T2)] dT2 + (1'2 + iq2) ( ['1'+(T2) - '1'-(T2)] dT2 = 0, (32)
JL2 JL2

where the following relation, resulting by a differentiation of relation (30), was also taken into
account

(33)

as well as eqns (11).
Furthermore, the condition (32), because of eqns (21), (22) and (27), may be written as

{(Pt + iqt)(1L2- ,L2)-(P2+ iq2)(ILI- ,L2)+(P2+ iq2)(lLt-1L2)} ( Ip(Tl) dTIJLl

+{(Pt + iqt)(1L2- ,L2)-(P2+ iq2)(,LI- ,L2)+(P2+ iq2)(,Lt-1L2)} ( cp(Tt)dTtJLI

=-(P2+iq2) Lq(T)dT+(P2+iq2) Lq(T)dT. (34)

This equation, equivalent to the condition of single-valuedness of displacements (31), should
be verified by the unknown function Ip(tt) of the singular integral eqn (28), which, otherwise,
could not be fully determined.

5. APPLICATION TO THE CASE OF A STRAIGHT CRACK
The singular integral eqn (28) has not, in general, a closed-form solution. One of the cases,

when such a solution can be easily found, is the case of a straight crack in an infinite anisotropic
medium. This crack is supposed to be a part L of the real axis, when the variables t, t I and t2

coincide, as can be seen from relations (9).
In this case eqn (28) can be written as

2(lLt -1L2)f cp(T) - 1 f q(T) d
----:-.- --t dT = P(t) +----; --t T,

1T1 L T - 7T1 L T-
(35)
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and its general solution is [9]
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where C is a constant to be determined and the function X(z) is defined as [9]

(36)

(37)

where a and (3 are the end-points of the crack L.

As regards the functions p(t) and q(t) on the crack L, because of eqns (3), (15), (18) and (26),
they are expressed by

P(t) = -Jot2(U;y + U;y) - (T;y + T';y) + 2(Jot2Uyyoo + Txyoo),

q(t) = - Jot 2(U;y - U;y) - (T;y - T';y).

Furthermore, from eqns (20) and (27), we find for the functions <I>(z) and 'I'(z)

(38)

<I>(z) = I { __I_ r Jot2(u;y-U;y)+(T;y-T';y)dT
2(Jott - Jot2) 27Ti L T - Z

_ I r X(T)[Jot2(U;y+ U;y) + (T;y+ T';y)] dT
27TiX(z)JL T-Z

+ (Jot2Uyyoo + Txyoo) [ I - 2z ;l~z~ (3)] + X~zJ
'I'(z) = I {_I_. r JotI(u;y-U;y)+(T;y-T';y)dT

2(JotI- Jot2) 2m Jl. T - z

I r X(T)[Jotl(u;y + U;y) + (T;y + T';y)J d (39)
+ 27TiX(z) L T - Z T

[
2z - (a + (3)] (Jott - ji2)C - (Jot I - Jot2)g

-(JotIUyyoo+Txyoo) 1- 2X(z) - (Jot2-Jot2)X(Z) -J'

where it was taken into account that

_1_ r X(T) dT = 1- 2z - (a + (3)
7TiX(z)}l. T-Z 2X(z) .

(40)

Finally, the constant C will be determined from the condition (34) of single-valuedness of
displacements, which, because of eqns (38) and (39) can be written as

{(PI + iql)(Jot2 - ji2) - (P2 + iq2)(JotI - ji2) + (P2 + iih)(JotI - Jot2)} 2( ~ )
Jot 1 Jot 2

X {L q(T) dT - 27TiC} +{(PI + iql)(Jot2 - ji2) - (P2 + iq2)(jil - ji2) + (P2 + iih)(jil - Jot2)}

x2(jil~ji2){L q(T)dT+27TiC}=-(P2+iq2) L q(T)dT+(P2+iq2) L q(T)dT. (41)

It can be also remarked that, because of eqn (38), we have

where X and Yare the components of the resultant force acting on the whole crack.
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The results of this paragraph are in accordance with those found in Ref. [12] by using the
method of reduction of the problem of a straight crack to a Riemann-Hilbert boundary value
problem and by a closed-form solution of the latter.

6. DISCUSSION-GENERALIZATIONS
The method of treating the problem of a simple smooth curvilinear crack in an infinite

anisotropic medium presented in this paper can be easily generalized to a series of other
interesting problems for plane anisotropic media which either contain cracks or not. In all cases,
the problems are reduced to one complex Cauchy-type singular integral equation along all the
boundaries of the media under consideration, accompanied with the necessary conditions of
single-valuedness of displacements.

Besides the method presented here the based on the theory of Cauchy-type integrals and the
Plemelj formulae, another method for reducing the problem of a finite or infinite anisotropic
medium with or without cracks or holes to a complex singular integral equation consists in
considering elementary concentrated forces or dislocations acting along its boundaries except
cracks and also both concentrated forces and dislocations acting along the cracks.

Also, in an analogous way to that used here for the case of the first fundamental problem, the
second fundamental and the mixed fundamental problems could be treated as well, although the
resulting singular integral equation for the case of the mixed fundamental problem is a little more
complicated as involving the unknown function ip(t) not only inside integrals, but also as a free
term.

It can be also noted that, instead of the expressions (20) for the functions <Il(z\) and 'It(Z2), we
could have used expressions of the form

(43)

where the functions Xdz) are given by

(44)

where a\.2 and (J\.2 are the end-points of the arcs L\ and L2 of Fig. 1 respectively, and the
functions w(7'\) and X(7'2) are unknown functions to be determined. This approach was used by
Ioakimidis[4], but leads to a more complicated form of a singular integral equation, because of
the constants C\ and C2 and the functions Xdz).

Finally, the numerical solution of the singular integral eqn (28) can be easily found by the
Gauss-Chebyshev method proposed by Erdogan and Gupta[18] or by the Lobatto-Chebyshev
method proposed by Theocaris and Ioakimidis[19]. In the usual case, when we are interested in
the values of the stress intensity factors at the tips of the crack, the Lobatto-Chebyshev method
is more accurate and should be preferred.
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